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A SUMMARY 

/ . - 

Many administrative and planning problems — as well as 

others — can be studied and solved with mathematical models 

by the technique known as linear proyramminy.  The most practical 

way yet devised of solviny the resulting mathematical problem 

is the so-called^simplex method. 

It is to be emphasized that comparatively simple models 

quickly lead to large-scale computations.  Indeed, computing 
4 

machinery adequate for such work has only existed in recent 

years. Current work is being done on an IBM 701 calculator, 

based on experience gained with smaller models solved on the 

IBM CPC.  One of these was a fairly thorough study of a petrol- 

cum blending problem which illustrates the power of linear pro- 

gramming as a tool for planning.  Many technical problems yet 

remain to be resolved but machine codes now beiny perfected 

will vastly increase the versatility of the present methods. 

Those who would use the technique for their own problems, 

however, should give thought to gaining a more precise notion 

of the relative values of the activities and 'goods' to be 

studied. 
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THE LINEAR PROCRAMMING TECHNIQDE 

One of the mathematical tools that has been applied to 

Operations Research, or at least to some areas oi it, is the 

technique known as linear proyramminy.  This may be defined 

briefly as follows:  the maximization 01 a linear form subject 

to linear inequality restraints.  The word 'maximization* can 

of course be replaced with 'minimization* and a better, more 

yeneral term is 'optimization'.  Although the foreyoiny defi- 

nition is riyorous enough, it is somewhat barren as far as 

conveying to the mind the scope of problems to which the techni- 

que may be applied.  It has been remarked that the term 'linear' 

is unfortunate in that it sounds unduly restrictive.  Actually, 

whether or not a problem is linear depends to some extent on how 

it is formulated.  As one becomes more familiar with the method, 

the apparent ranye of problems to which it can be applied is 

enlarged.  We will elaborate on this later. 

The purpose in constructiny a linear proyramminy model is 

of course analoyous to the purpose in makiny miniature, but 

reasonably true-to-scale, models in planniny the lay-out of a 

home, office, or shop.  In the latter case, there is so much 

space of a certain geometric shape available, there are so many 

pieces to be put in it,  and there are certain requirements as 

to utility, access room, and so forth, which must b» satisfied. 

By moving the models about, we can arrive at the best arrangement 

even before the real machines arrive. 

In a similar way we may construct a linear programming 

model of the activities involved in some enterprise.  There is 
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difficulty in manipulating a model of this kind, however, due 

to the fact that its geometric interpretation is not three- 

dimensional.  We are concerned with many activities, each 

having several aspects and inter-relationships with the others, 

so that intuition soon boys down.  Ne simply cannot manipulate 

the various rows and columns of the model matrix, by hand so to 

speak, and keep track of the consequences.  Instead, formal 

mathematical procedures must be developed and followed, both 

to insure that no requirements have been violated and to make 

the computations feasible. 

THE SIMPLEX METHOD 

It is almost universally agreed that the best procedure 

yet devised — and in my own opinion likely to be devised — for 

solving linear programming problems, as such, is the simplex 

method.  This was originally developed by Or. George B. Dantzig 

who is now at RAND and with whom I have worked for a year and 

a half in developing machine methods for the simplex process. 

Since this has been by far the largest part of my experience 

with linear programming, I may use the two terms as though 

they were synonymous, in spite of the fact that there are other 

ways to solve these problems. 

Perhaps the most instructive way to explain the tech- 

nique in a few minutes is to construct a model for a very 

simple, transparent, and necessarily extremely over-simplified 

problem. 

CONSTRUCTING A MODEL 

Suppose you had six working days in which to write a 

report.  Let us assume that IJa days to assemble data and 2 days 
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for writing are minimuin requirements.  Besides this, tine to 

evaluate the data and devise illustrations is desirable.  How 

should you schedule your tine to produce the best results? 

Four activities were enunerated above: 

A: Assemble data; nininun of 3/2 day». 
C: Evaluate data. 
D: Devise illustrations and exanples. 
W: Write report: nininun of 2 days. 

Each activity will be represented by a colunn of figures, that 

is a vector, and by using another colunn for the right hand 

side, we have 3 inequations in time: 

Activity A     E     D     V 

Total tine spent       l*tA ♦ l*tE ♦ l*tD ♦ 1•tw £ 6 

Tine to assenble data  l*tA £ 3/2 

Time to write report l^t* > 2 

the t*s being the variables in the problem.  Now it is incon- 

venient to work with inequalities so we will introduce three 

additional activities: 

S:  Total tine not used, a slack vector. 
B:  Time spent assenblimj data beyond mininum required. 
C:  Time spent writing beyond mininun required. 

Then, if we onit the t*s and plus signs as being understood, we 

have: 

(1) 

A E D w s B c 

1 1 1 1 1 0 0 = 6 

1 0 0 0 0 -1 0 = 3/2 

0 0 0 1 0 0 -1 =  2 

Since we always require activities to be used in non-negative 

amounts, clearly B and C can have non-zero coefficients only 

after the two requirements are met. 

However, (1) only represents the inequality restraints 
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which are inposed on the system; we still lack the most 

iaportant linear form, the one which maximizes the worth of 

the finished report. To specify this form we will have to 

decide on the relative worth of the different activities.  For 

the sake of argument, let us suppose that every hour spent evalu 

ating the data will contribute most to the final result, that 

every hour spent on illustrations and examples will contribute 

about half as much worth as the hour spent evaluatiny, and that 

each additional hour spent assembling data or writing will each 

contribute about a fourth as much worth as the evaluating.  The 

slack activity is worth nothing and since specific demands are 

made on A and W, we need only assign values to E, D, B, and C. 

If vj is the relative value of the l-th activity, then we wish 

to have 

tE¥E * VD * tQvB  ■*■ tCvC = «naximum 

or incorporating this in our system as the top row (usually 

indexed zero): 

A    E    D    W    S    B    C 

0 11/2 0 0 1/4       1/4       = max 

1 11 1 10 0=6 
(2) 

1 0 0 0 0-1 0=3/2 

0 0 0 1 0 0-1=2 

(Another   possible  constraint) 

(2a)        1-1 0 0 0 1 0=0 

This   last  system  is   a  perfectly  good   linear  programming 

model   which   the  simplex  method will  solve   in   short  order.     01* 

course   the  obvious   solution   is   to  spend   llj  days   assembling 

data,   2*2  days  evaluating   it,   and  2 days  writing   it  up.     The 



total  relative value for  this  schedule   it yreater than  that 

for  any other  schedule.     It   is  in general   true  that any system 

of ■ equations   (not  including  the  for«  to be optiaized)   has   an 

optimal   solution   involving  not more than m  activities provided 

it   has  any optimal  solution  at all.     If  «e wrote another equation 

or   two  specifying  more  subtle   inter-relationships  between  the 

activities,   then  the solution would not   be  quite so obvious. 

For example,   we might  require  that  tA +   tB  -  tg.     (See   (2a)). 

COMPDTATIONAL EXPERIENCE ON THE CPC   (IBM's  Card_ Programmed 
Calculator) 

It must be emphasized that  comparatively simple models 

quickly   lead  to  large-scale  computations.     I   think  it   is       fejt r 

to   say  that the  application of  the  simplex  method,   or any other 

linear  programming  method,   to  real-life   problems  is  practical 

only   if one has  a   large,   high-speed computer  available,   except 

in  certain special  cases.     A great deal   of effort  is currently 

being  expended on  developing  adequate machine  codes  for  quite 

extensive problems.     This   interest  is  not confined  to one group 

or  one  area,   but  companies  of  various  kinds   all  over  the  country 

are  devoting   time  and  money  to  learning   how  to  use either   linear 

programming or  some  comparable  technique,   such   as  combinatorial 

analysis.     A little  later  I   shall   indicate what  sort of codes  we 

are  developing  at  RAND   for   the  lOM 701   calculator.    Certain 

problems,   however,   have  been  studied  quite  extensively  on  a 

now-so-humble machine  as   the CPC.     I  would  like  to discuss 

one   such  problem  at   some  length. 

To  begin with,   I   should  indicate  what  size  problem we 

proposed  to handle on  the CPC.     It  has   become practically 

standard  practice   to  denote  the  number  of  rows  «-  or equations  — 
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of a model matrix by m, and the number of columns — or 

activities — by n.  Althouyh both m and n, as well as some 

unknown or indefinite factors, enter into our formula for the 

time required to solve a simplex problem, it is the size of m 

which is critical for space as well as time.  Along about 

December of 1952, I began developing a set of plug-boards and 

a procedure for the CPC to handle systems up to m = 27 and 

n = 70.  This was my first exposure both to linear programming 

and the simplex method.  Me ran a problem about the first of 

May, 1953. The development of a CPC set-up had been intended 

as a training step and for this purpose the time was well spent; 

however, for practical purposes, the set-up was a failure.  Its 

first drawback was that it was much too slow, even for the CPC. 

I think I can fairly claim that this was not due to a lack of 

ingenuity on my part in using the machine, but rather was due 

to the unwieldy amount of information we were attempting to 

maintain with the very limited internal storage available.  The 

realisation of this fact led to a major revision in the computation- 

al procedure which has proved very fruitful, and in fact we have 

not yet discovered all the possibilities  which it affords. 

Mathematically, this revision consists of replacing the inverse 

of an m x ro matrix by the product of elementary column matrices. 

Those who are interested in this technique will find references 

listed at the end of the paper. 

The second difficulty with this first set-up was its 

inflexibility.  I attempted to make the operation as automatic 

as possible and it was some time before I realized that this was 
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a stunbliny-block.  I remark on this to re-enphatize the need 

for high-speed, internally-proyrammed computers.  To attain 

any degree of automation on a machine like the CPC, one must 

adapt his procedures to the idiosyncrasies of the machine.  I 

do not mean to discredit the CPC; it has, and is, performing 

much valuable work.  But it is not suited to a mixture of data 

handling, computation, and logical Juggling — such as the 

simplex method is — unless one is willing to stand at the 

card hopper and make complicated card manipulations as the 

problem progresses, and to make continual visual checks, an 

inefficient procedure at best. 

A second CPC set-up was devised capable of handling 

systems up to m = 40 and n = 99.  As much card-handling and 

as many decisions as seemed reasonably safe were imposed on 

the machine operator.  The set-up is still in use for certain 

specialized problems and the procedure has become the logical 

frame-work for our 701 codes.  Several problems, one as large 

as m = 36 and n = 99,  were run with excellent results.  However, 

the time required for e problem as large as Just mentioned 

is likely to be a few days.  Probably 50% of the work done 

by this set-up was on a 26 x 6l matrix which was later expanded 

to 2ö x 68 which seems to be about optimal size for the CPC, 

the machine time required being of the order of a working day. 

This problem, or really series of problems, constituted the 

computations needed in an economic study made by A. S. Hanne 

concerning the output of petroleum products in a thermal 

cracking refinery.  The results of this study are 

included in a book being published which is listed in the 
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references.  I »a indebted to Dr. Manne for the acconpanyiny 

chart and the following inforaation concerning the construction 

of the «odel and the interpretation of the results obtained. 

A PETROLEUM BLENDING PRODLEM 

Fly. 1 is a schematic drawing of the refinery, a 

hypothetical plant in the Oklahoma reyion. The input consists 

of 30° API gravity Mid-Continent crude and there are ten end 

products as shown.  At the left is the primary distillation 

column which takes the crude and produces gases, straight-run 

gasoline, three weiyhts of distillate oil, and residue. The 

distillates and residue may all be used directly in fuel oil 

blendiny and in addition each feeds a crackiny coil, the four 

coils in turn feeding a secondary fractionatiny column.  The 

secondary column produces the same cuts as the primary column 

and the cracked distillates may be recycled to the coils or 

used in fuel oil blendiny.  The cracked gasoline goes to the 

gasoline blending unit as did the straight-run gasoline, and 

here tetra-ethyl lead (TEL) is also added. 

Time will not permit further explanation of the technology 

involved; the details are available in the reference previously 

mentioned for those who have a technical interest in the petrol- 

eum industry.  Suffice it to say that the equations required to 

specify all the conditions suggested by the diagram were not all 

linear, initially.  In particular, there were seven independent 

variables — four representiny the proportion of the straight- 

run streams used for cracking stock and three representing the 

recycle ratios of the secondary distillate oils — which entered 

all equations in a non-linear manner.  Using a suggestion of 
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Kenneth Arrow, Manne defined seven new independent variables 

which do eater in a linear manner.  It seemed worthwhile to 

make special mention of this because it illustrates bow estab- 

lished technical usage is sometimes a stumbling-block in the 

way of simplification of a problem.  The original variables 

represented recycle ratios, which I understand is the concept 

generally employed by petroleum engineers.  The new variables 

represent quantities, but the change in definition does not 

alter any technical assumptions while it does render the calcu- 

lations considerably easier to perform. 

The only non-linearities remaining were those concerning 

the blending of TEL in gasoline.  Since the allowable variation 

in TEL for premium grade gasoline is very narrow, this was fixed 

at a constant value.  The TEL level in regular gasoline was 

handled as a parameter and three different optimal schedules 

were obtained for the three different values.  As Hanne later 

discovered, he could have defined alternative activities incor- 

porating the recipes for different levels of TEL in both regular 

and premium gasoline instead of using an activity of blending. 

This would have eliminated the need for separate optimizations, 

and additional concentrations for premium gasoline could have 

been incorporated.  Besides this, one equation out of the 26 

required to define all conditions could have been eliminated. 

However, as it turned out, the TEL level was not a very important 

consideration anyway. 

The model was beautifully set up with 61 activities 

involving the 26 equations.  In addition, there was a form to 

be minimized which was changed for different stages of the study, 
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or at Manne calls the«, the four 'runs*.  From my viewpoint — 

that is that of a nunerical analyst — each of his •runs' 

constituted several runs, or problens, but in the future we 

hope to have «ore elegant methods which will not seen so 

piecemeal.  In fact, this one study, or series of related sim- 

plex problems, led to the development of numerical techniques 

which yreatly expand the usefulness of the simplex method.  It 

is now possible— and indeed an accomplished fact — to build 

back into the simplex codes for large machines, such as the 701, 

the automation which was deliberately sacrificed for the second 

CPC set-up, plus a great deal more whose equivalent on the CPC, 

regardless of time, was laborious or impractical. 

The first set of calculations assumed an existing plant 

and an existing market price structure.  The results suggested 

that the gasoline blending problem could be divorced entirely from 

the rest of the refinery operations and that the highest con- 

centration of TEL allowable was the most profitable.  Conse- 

quently, in succeeding calculations, this parameter was left 

fixed at its highest value.  The general results of these first 

computations checked very well with actual conditions obtaining 

in the Oklahoma-Kansas-Missouri region at the time on which 

the assumptions were based. 

Forty-three iterations involving about ten machine hours 

were required to obtain the first optimal solution, for the 

lowest TEL level.  He found it possible to obtain solutions for 

the other levels by continuing the calculations a very few 

iterations — using appropriate tricks — rather than by start- 

inv over from scratch.  This was our first attempt — somewhat 
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crude — at what Manne calls parametric linear programniny 

and what I call post-optimality problems — reflecting, I suppose, 

the different viewpoints of one who formulates a problem and 

one who carries through the computations.  Recently, in checking 

out a 701 code incorporating double-precision, floating-point 

arithmetic and designed to handle problems up to m = 100 or 

even higher, I re-solved the problem for the highest TEL level 

directly.  This required 41 iterations end about 22 minutes. 

It was gratifying to note that the results checked with the 

round-about CPC run to better than four decimal places for the 

variables and to about three for the shadow prices, which are 

the prices imputed to the commodities by the system of activi- 

ties engaged in. 

These shadow prices are very interesting and 

useful in their own right — nearly as much so as the values 

of the variables.  They are a free by-product of the simplex 

method since  they constitute the elements of a certain row 

of the inverse of the optimal basis matrix — that is, the 

square matrix obtained by adjoining the columns of activities used 

in the optimal schedule.  This row from the inverse of any basis 

is used in the criterion for determining whether any other 

basis gives an improvement.  Consequently, this row vector 

from the optimal basis can be used for pricing out any other 

activity not originally included in the problem.  The elements 

are the prices imputed to the various items represented by the 

rows of the model when the schedule involves the activities 

making up the basis, and these prices are independent of the 

levels at which the activities are used. 
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The second set of calculations was to study tbe effect 

of a market rise in the price of Number 6 fuel oil on an optimal 

program.  Mere we developed an important type of parametric 

programming involving changes in the price structure, that is 

varying the values placed on different activities.  It turned 

out that if the price of Number 6 fuel oil was quadrupled, the 

increase in production should only be 10', although there were 

some side effects on other distillate oil blends. 

The third computation was similar to the second but 

used variations in the values of gasoline and Number 1 fuel 

oil as reflections of changes in demand of these two important 

items in order to study production flexibility within a given 

plant.  The results showed that, regardless of demand, the 

plant could not convert more than about 22 , of its crude into 

either product.  This technique of varying a price structure in 

order to exert strong pressures without actually imposing rigid 

demands is an important aspect of linear programming.  Not the 

least of its uses is in determining what values should be placed 

on activities to simulate real-life conditions, where the value 

of an activity is not such a simple thing as the going market 

price of an item.  That is, linear programming can be used in 

somewhat reverse fashion with known results to impute values. 

For the fourth set of computations, two more equations 

and seven more activities were added.  It was later discovered 

that five equations and six activities from the total could 

have been eliminated. ' 'atever loss in machine time this may 
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have incurred, however, was surely more than compensated for 

by the experience gained in applying linear proyramming. 

Dr. Manne has recently developed a 100 order model to be solved 

on the 701.  Undoubtedly the experience he gained with the 

smaller model used on the CPC has been invaluable in formu- 

lating his new model.  I am sure that without the experience I 

gained in solving problems on the CPC, it would have been 

impossible for me to develop the 701 code which will solve the 

100 row system.  I strongly recommend that any company wishing 

to use linear programming extensively set up informal teams 

embracing economics, business administration or some appropriate 

subject together with numerical analysis and machine know-how, 

and have them begin with solving small order problems to ^ain 

familiarity with the technique and to de-bug their procedures 

and methods of communication. 

The fourth run was in some ways the most interesting of 

all.  It was a capital investment problem involving the con- 

struction of an ill-new refinery.  The results showed that, 

for the same original investment of $1.0 millions, the refinery 

could have been earning $132,900 more per annum; or, conversely, 

to realize the same profit, the initial investment could have 

been trimmed to $1.43 millions.  These results admittedly were 

dependent on estimated construction costs which miyht vary 

widely.  However, the shadow price of invested capital showed 

that small increases in the capital outlay would have welded 

returns of about 21° per annum. 

From the standpoint of numerical analysis, run four was 

interesting in that it made use of a parnneler — perhaps 

better termed a variable — in the ri^lil hand side.  This 
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variable was held fixed until an optimal solution was obtained. 

Then the critical values of the variable were computed and 

corresponding changes made in the optimal schedule as these 

critical values were crossed.  We were able to develop a fixed 

and straight forward procedure for these calculations. This 

consists of using the desired change as a pseudo-activity to 

determine a certain index and then using the row of the inverse 

matrix denoted by this index for pricing out.  Single changes 

in any number of the right hand elements may be considered 

simultaneously.  There are other applications of this device 

which have not yet been thoroughly explored. 

PRESENT AND PLANNED SliPLEX CODES F0R_ THE 701 

I began last summer to develop a code for the 701 to 

carry out the simplex code for larger models, but without any 

parametric variations.  George Dantzig and I felt that the 

system used on the CPC should provide an extremely fast code 

for the 701.  Unfortunately, I went overboard on the idea of 

speed, and neglected the matter of accuracy.  Working inter- 

mittently on the project, I did not get it checked out until 

the end of January, this year.  It was a whiz-bang for speed, 

sure enough.  It plowed through a 25 order test problem  in 

about a minute.  The only trouble was that when the numbers 

were anything but low order integers, round-off error accumulated 

so fast that the code would bog down in a few iterations.  This 

so distressed me that I worked practically day and night through- 

out February writing a new code incorporating double-precision, 

floating-point arithmetic.  (After all, I had to have something 

to say at this point.)  The esults were worth the effort however, 



P-402 
p.16 

Although the speed is not remarkable, considering the machine, 

the code will handle larger problems more quickly than any 

other which has been reported to date.  The accuracy is excellent. 

Several stringent tests are built into the code.  One of these 

is that after each ten iterations, the solution is actually 

multiplied out as a matrix-vector product, and compared with 

the right hand tide.  After 100 iterations on an 00 by 174 

model, the solution greed exactly with the  right hand side 

to seven decimals which is all that are printed.  The 100 

iterations on this fair-sized problem required 2-1/2 hours. 

I learned enough from the mistakes made in the first code to 

enable me to arrange the new one in such a manner that varia- 

tions con be introduced quite easily.  Several auxiliary codes 

to be used in various circumstances have already been checked 

out and it is planned to build up a complete system of coding 

to handle all procedures with which we are familiar to date. 

The code can be immediately changed to handle 200 order systems 

provided the accuracy maintained proves sufficient. 

It is hoped that a practical procedure may soon be develop- 

ed for handling dynamic models ot larger magnitude.  This is 

essential to the solution of larye and complicated scheduling 

problems set up in linear programming form.  The difficulties 

to be overcome, however, loom as tremendous at this time.  Per- 

haps a year hence, they will not se«n so formidable, but  we 

will have a try at it in any event. 

In conclusion, may I again emphasize that in synthesizing 

any complicated enterprise, we must have precise notions of 
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the relative values of the components to be considered.  At 

long at models represent strictly physical conditions, the 

cost row is likely to be merely another set of restraints 

handled in a special «ray.  However, when a model involves 

quantities dependent on human relations, the values to be 

imputed may be a highly complex matter.  I suggest that this 

is the area requiring the most study by those in the field of 

management. 
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